Product Description

GR-55×57 Aluminum Alloy GR Rigid Shaft Coupling Bellows Setscrew Coupling

Description of GR-55×57 Aluminum Alloy GR Rigid Shaft Coupling Bellows Setscrew Coupling
>The material is aluminum alloy, and the middle bellows is made of stainless steel with excellent corrosion resistance
>Laser welding is used between bellows and shaft sleeve, with zero rotation clearance, suitable for CHINAMFG and reverse rotation
>Bellows structure can effectively compensate radial, angular and axial deviation
>Designed for servo motor stepper motor
>Fastening method of setscrew

 

Catalogue of GR-55×57 Aluminum Alloy GR Rigid Shaft Coupling Bellows Setscrew Coupling

model parameter

common bore diameter d1,d2

ΦD

L

LI

L2

L3

N

F

tightening screw torque
(N.M)

GR-16×27

4,5,6,6.35,7,8

16

27

7.5

2

8

13.5

3

0.7

GR-20×32

5,6,6.35,7,8,9,9.525,10,11,12

20

32

7.2

2.8

12

18

3.5

0.7

GR-22.5×34

5,6,6.35,7,8,9,9.525,10,11,12

22.5

34

8.05

2.8

12.3

20.2

4.5

1.7

GR-25×37

6,6.35,7,8,9,9.525,10,11,12

25

37

9.5

3

12

20.2

4.5

1.7

GR-32×42

8,9,10,11,12,12.7,14,15

32

42

8

4

18

27.2

5.5

4

GR-40×51

8,9,9.525,10,11,12,12.7,14,15,16,17,18,19,20

40

51

9.5

6

20

34.5

5.5

4

GR-55×57

10,11,12,12.7,14,15,16,17,18,19,20,22,24,25

55

57

9

6

27

51.9

6.25

7

GR-65×81

10,11,12,12.7,14,15,16,17,18,19,20,22,24,25,28,30,32,35,38

65

81

19.5

7

28

60.5

8.9

7

model parameter

Rated torque(N.m)

allowable eccentricity

(mm)

allowable deflection angle

(°)

allowable axial deviation

(mm)

maximum speed

(rpm)

static torsional stiffness

(N.M/rad)

weight

(g)

GR-16×27

0.8

0.1

2

-0.8

20000

150

8

GR-20×32

1.5

0.1

2

-1.2

18000

220

13

GR-22.5×34

1.8

0.15

2

-1.2

16000

300

22

GR-25×37

2

0.15

2

-1.2

15000

330

30

GR-32×42

2.5

0.2

2

-1.7

11000

490

53

GR-40×51

6.4

0.3

2

-1.7

10000

530

85

GR-55×57

12

0.3

2

-1.7

9000

860

170

GR-65×81

18

0.2

2

-1.8

4500

900

280

 

 

 

 

 

bellows coupling

Can Bellows Couplings Handle Angular and Parallel Misalignments Simultaneously?

Bellows couplings are designed to handle both angular and parallel misalignments simultaneously, making them versatile for various mechanical power transmission applications. The bellows element, typically made of a thin-walled metal structure, allows for flexibility in multiple directions, enabling the coupling to accommodate different types of misalignments.

1. Angular Misalignment: Angular misalignment occurs when the driving and driven shafts are not collinear and form an angle with each other. This type of misalignment can happen in applications where the shafts are not perfectly aligned due to assembly errors, shaft deflection, or thermal expansion. The bellows coupling’s design allows it to flex in response to angular misalignment, transmitting torque smoothly without inducing additional stress on the connected components.

2. Parallel Misalignment: Parallel misalignment, also known as lateral misalignment, happens when the axes of the driving and driven shafts are parallel but not concentric. This misalignment may occur due to inaccurate alignment during installation or shaft deflection under load. The bellows coupling’s flexible bellows element can also compensate for this type of misalignment, ensuring that the shafts remain parallel enough to prevent excessive forces and vibrations.

Simultaneous Misalignments: Bellows couplings are unique in their ability to handle both angular and parallel misalignments simultaneously. As the bellows element flexes in multiple directions, it can compensate for misalignments in both planes without imposing significant side loads on the shafts or bearings. This capability makes bellows couplings well-suited for precision motion control systems, where maintaining accurate alignment is crucial to ensure smooth operation and longevity of the equipment.

It is important to note that while bellows couplings can handle a certain degree of misalignment, excessive misalignments should be avoided to prevent premature wear and reduce the efficiency of the coupling. Regular maintenance and inspections can help identify and correct misalignment issues early, ensuring optimal performance and extended service life of the bellows coupling and the entire mechanical system.

bellows coupling

Can Bellows Couplings Be Used in Applications Requiring Electrical Isolation Between Shafts?

Yes, bellows couplings can be used in applications that require electrical isolation between shafts. The bellows coupling’s design inherently provides electrical isolation due to the absence of physical contact between the metal components. This feature makes bellows couplings well-suited for scenarios where electrical continuity must be maintained or prevented between the connected shafts.

In certain industrial setups, such as in motor-driven systems or equipment utilizing sensitive electronics, maintaining electrical isolation is crucial to prevent interference or electrical currents from flowing between the driving and driven shafts. In such cases, a bellows coupling acts as an ideal solution because the bellows element, made of non-conductive material, separates the two shaft ends while still transmitting torque.

Additionally, the material used for the bellows element can be selected to ensure optimal electrical insulation properties. For example, using materials like stainless steel or aluminum for the bellows ensures high electrical resistance and prevents any current leakage or conduction through the coupling.

By providing electrical isolation, bellows couplings help in safeguarding sensitive electronic components, minimizing the risk of electrical damage or interference, and ensuring the reliability and performance of the overall system.

bellows coupling

What are the Key Design Considerations when using Bellows Couplings for Precision Applications?

When using bellows couplings in precision applications, several key design considerations must be taken into account to ensure optimal performance and accuracy. These considerations include:

  1. Torsional Stiffness: In precision applications, maintaining torsional stiffness is crucial to minimize angular deflection and maintain accurate positioning. Choose bellows couplings with high torsional stiffness to ensure precise torque transmission.
  2. Backlash-Free Design: Backlash can introduce positioning errors in precision systems. Select bellows couplings with minimal or zero backlash to maintain accurate motion control.
  3. Radial Runout: Ensure that the bellows coupling has low radial runout to prevent eccentricity and vibration during rotation, contributing to smoother operation.
  4. Material Selection: Choose materials with excellent fatigue resistance and high strength to withstand continuous operation and provide long-lasting performance.
  5. Misalignment Compensation: Evaluate the required misalignment compensation for the specific application. Bellows couplings should be capable of accommodating both angular and axial misalignments without sacrificing precision.
  6. Compact Size: For applications with limited space, consider compact bellows couplings that provide high torque capacity in a small form factor.
  7. Temperature and Corrosion Resistance: If the application involves extreme temperatures or harsh environments, opt for bellows couplings made from materials that offer temperature and corrosion resistance.
  8. Vibration Damping: Bellows couplings with good vibration damping properties help reduce resonance and maintain system stability during high-speed operations.
  9. Electrical Isolation: In precision applications with sensitive electronics, consider bellows couplings that provide electrical isolation to prevent electrical currents from passing between shafts.
  10. Customization: Some precision applications may require tailored solutions. Collaborate with coupling manufacturers to explore custom designs that meet specific requirements.

By carefully considering these design aspects, engineers can select the appropriate bellows coupling that aligns with the precision application’s needs, ensuring accurate motion control, reliability, and enhanced performance.

China OEM Gr-55X57 Aluminum Alloy Gr Rigid Shaft Coupling Bellows Setscrew Coupling  China OEM Gr-55X57 Aluminum Alloy Gr Rigid Shaft Coupling Bellows Setscrew Coupling
editor by CX 2023-11-16